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Abstract

Consumers often rely on price as a guide to the quality of a product. If consumers

are unable to observe quality directly, price might not perfectly communicate product

quality. In this context, competition might increase or decrease the informativeness of

prices. I study how competition impacts the informativeness of prices theoretically and

in a lab experiment. While theory leaves the question open, I find in the experiment

that competition leads both high- and low-quality firms to decrease prices, but the

price reduction is larger for high-quality firms who are more likely to price high in the

absence of competition. Thus, prices become a less reliable guide to quality when there

are more sellers in the market.
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1 Introduction

Prices often contain information about the quality of products. Consumers are primed to

expect prices to carry information, and will use the price as a guide to quality when quality

is otherwise unknown (Leavitt 1954, McConnell 1968, review in Olson 1977). Nevertheless,

prices do not do this job perfectly. Consumers continue to occasionally experience ex-post

regret after buying a product of lower quality than expected. Or consumers may expend

time and effort to learn about product quality prior to purchase, implying that the price is

not, on its own, a reliable guide to quality.

Prices are informative of quality if consumers can predict the quality of a product from its

price, as would be possible if high-quality products always sold for high prices and low-quality

products always sold for low prices. But one main reason prices are not fully informative

is that, if consumers are willing to buy a high-quality product at a high price, firms with

low-quality products may be incentivized to ‘pretend’ to be high-quality by setting a high

price. If the consumer cannot observe quality directly and uses the price as a guide, this

mimicking strategy could be successful.

In this context, competition between firms becomes relevant. Competition generally

lowers prices. But the effect of competition on price informativeness is theoretically unclear.

It could be that competition drives down the prices of the low-quality firms, and thus makes

price a more reliable guide to quality. But it might also be that competition drives down

the prices of the high-quality firms and thus price does a worse job distinguishing between

firms.

In this paper, I examine how competition between sellers affects how well prices func-

tion as signals of product quality. I use a simplified version of Janssen and Roy (2010),

and consider the perfect Bayesian equilibria. I show how different patterns of equilibrium

selection could lead to more or less informative pricing, and then implement the game in a

lab experiment.

In the experiment, I find that competition generally decreases price informativeness.
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Competition drives down the prices set by both high- and low-quality firms, but the effect

is largest on high-quality firms, who are most likely to set high prices in the absence of

competition. Thus, the variance of prices decreases, and consumers are less able to deduce

the quality of a product from its price.

In a standard signalling model, there are two types, high and low, and the high-type

engages in some costly signalling behavior to prove their high type. Maybe this is a worker

getting an education to prove their high ability, or a firm getting a costly certification of

their product. The signalling behavior needs to be less costly for a high-type than for a

low-type; that way the high-type can credibly demonstrate that they are a high-type by

doing something the low-type would never want to do. The recipient of the signal believes

the message because they know that the signal would be so costly for a low-type that the

low-type would not want to mimic the signal, even if it meant they could masquerade as a

high-type.

In my simplified version of Janssen and Roy, one or more firms have either high or low

quality, and choose to set either a predetermined high price or a predetermined low price.

Buyers see the price, but not the quality of the firms. When signalling occurs through the

sellers’ price choices, it is harder to sustain separation because the signalling behavior is more

suspect. If a firm tries to signal their high quality by setting a high price, it is more difficult

to convince buyers, since buyers know that any firm, high- or low-quality, would prefer to

sell at a high price. This is the additional wrinkle in a price signalling game compared to a

generic signalling game.

In order for signalling to be credible, it must be costly, and this means a firm must be less

likely to sell when setting a high price than setting a low price. One way this could happen

is if low-quality firms occasionally set the high price; then buyers would be suspicious of the

high price and sometimes not buy high-priced products.

If this is happening and then an increase in competition drives prices down, the relevant

question is: whose prices are driven down? The reason prices are not fully informative
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is because low-quality firms sometimes set high prices, so if competition drives down low-

quality firms’ prices, prices become more informative. But if competition drives down the

prices of high-quality firms, it becomes harder to distinguish between firms based on prices,

so prices become less informative.

This work contributes to the literature in two ways. The model can be fully solved out

for the symmetric equilibria, and to my knowledge, the solution is new. This model provides

a simple environment in which to understand price signalling. This work contributes to the

experimental literature by examining how prices might convey information endogenously

and how that role is affected by competition. There is a large experimental literature that

examines how well prices function as guides to product quality, but none examine prices

conveying information endogenously. These are generally older papers where the rational

expectations of buyers are not considered. As yet, I know of no experiments that examine

endogenous price signalling.

2 The Model

The model consists of n ex-ante-identical firms. Each firm is independently equally likely to

be high-quality or low-quality. After realizing their quality, each firm simultaneously chooses

a price p ∈ {pL, pH}. There is one buyer, who observes the price set by each firm but cannot

observe which firms are high-quality and which are low-quality. After seeing the vector of

prices, the buyer decides whether to buy one of the high-priced products, one of the low-

priced products, or none. If the buyer chooses not to buy, they receive a payoff of zero, as

do all the firms. If the buyer chooses to buy one of the products, they receive a payoff of

v−p where p is the price of the product they chose to buy, and v is the value of the product.

v = vH if the firm is high-quality and v = vL < vH if the firm is low-quality. The firm whose

product sold receives p− c where p is the price the firm set and c is the cost of production.

If the firm is high-quality, c = cH , but if the firm is low-quality, c = cL < cH . All other firms
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receive a payoff of zero. The timing of the game is given in figure 1.

n firms pri-
vately realize
their qualities
v ∈ {vL, vH}.

Firms simul-
taneously

choose prices
p ∈ {pL, pH}.

Representative
consumer

decides which
product to
buy, if any.

Figure 1: Timing of the Game

A firm’s pure strategy involves a price to set if the firm is high-quality and a price to set

if the firm is low-quality. Each potential mixed strategy can be denoted by

s =



(pH , pH); w.p. P1

(pH , pL); w.p. P2

(pL, pH); w.p. P3

(pL, pL); w.p. P4

where (a, b) denotes the pure strategy of setting p = a when high-quality and p = b when

low-quality. A pure strategy for the buyer is a choice to buy either a high-priced product,

a low-priced product, or nothing, for each possible vector of prices that could be observed.

Since the buyer only observes prices and has no other information about the firms, the buyer

cannot distinguish between firms setting the same price. If the buyer chooses to buy a low-

priced product (for instance) and there are multiple firms setting the low price, the buyer

chooses uniformly randomly among them, so that each sell an equal fraction of the time in

expectation. I further limit the analysis to symmetric equilibria, where firms of the same

type play the same strategy. The solution concept is the perfect Bayesian Nash equilibrium.

I consider parameter values in which a low-quality product is worth buying at the low

price and the high-quality product is worth buying at the high price, but a low-quality
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product is not worth buying at the high price:

pL < vL < pH < vH

I preclude firms pooling at the high price by assuming that

pH > E[v]

This means low-quality firms cannot always cheat the buyers without buyers eventually

deciding to stop buying the expensive products. I assume that consumers prefer high-quality

products at the high price to low-quality products at the low price.

vH − pH > vL − pL

If this were not true, at least with sufficient probability, then buyers would always prefer

cheap products to expensive products, regardless of quality, and consumers would never

regret their purchase. Lastly, I allow both firms to have positive profit margin when setting

the low price

cH < pL

This is because, in this model, the effect of competition on informativeness comes down

to whether high-quality or low-quality firms decrease their price the most in response to

competition. If this assumption were not true, high-quality firms would have only one

feasible price they could set, and so the parameter values would preclude high-quality firms

from reducing their prices due to competition.
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2.1 Equilibria

Consider the buyer’s problem after observing a vector of prices ~p. Given the observed vector

of prices, the buyer has beliefs about the likelihood that each firm is high-quality versus

low-quality. I denote the buyer’s belief that firm j is high-quality after observing ~p by

µj(~p) ≡ P(vj = vH |~p)

Since consumers cannot distinguish between firms setting the same price, and only choose

whether to buy a high-priced or low-priced product (or none), the relevant beliefs are

µH(~p) ≡ P(v = vH |p = pH , ~p)

µL(~p) ≡ P(v = vH |p = pL, ~p)

Further narrowing the problem by focusing on symmetric equilibria hugely simplifies beliefs

by reducing the dimensionality from 2n down to 2, everywhere along the equilibrium path.

Proposition 1. In any symmetric equilibrium where P1 6= 1, and P4 6= 1,

µH(~p) ≡ µH , µL(~p) ≡ µL

This is obvious since, for any firm setting the high price, µH = (P1 +P2)/(2P1 +P2 +P3)

and for any firm setting the low price, µL = (P3 + P4)/(P2 + P3 + 2P4) by Bayes’ Rule. But

the requirement that the equilibrium be symmetric is necessary. Otherwise, there could be,

for instance, one firm that always sets the high price regardless of quality and another firm

that is type dependent, setting the high price when high-quality and the low price when

low-quality. In this case, if the buyer observes ~p = (pH , pL), they know the high price was

set by the firm that always sets the high price, and thus µH(~p) = 1/2. But if the buyer

observes ~p = (pH , pH), then one of the high prices comes from a surely high-quality firm

and one comes from a firm with 1/2 chance of high-quality, so µH(~p) = 3/4. So if firms are
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not symmetric, the whole price vector can matter for buyer beliefs, and the buyer can have

different beliefs for different amounts of high and low prices in the price vector.

The caveat that P1 6= 1 and P4 6= 1 is also necessary. If one of the two prices is never

set, then most of the price vectors will never be reached. If the situation where the buyer

observes ~p is off the equilibrium path, then beliefs are not constrained by observed behavior,

so the buyer can have any beliefs µH(~p) and µL(~p), and thus µH(~p) will not necessarily be

the same as µH(~p′).

Continuing with the assumptions of proposition 1, consider the buyer’s expected utility

from each of their possible strategies. If the buyer buys a high-priced product (strategy BH),

they receive an expected payoff of

EuB(BH) = µHvH + (1− µH)vL − pH

If they buy a low-priced product (strategy BL), they receive

EuB(BL) = µLvH + (1− µL)vL − pL

and they receive 0 if they buy nothing.

Notice that, because pL < vL < vH , the buyer always prefers buying a low-priced product

to buying nothing. The buyer will prefer buying a high-priced product to buying nothing if

high-priced products are sufficiently likely to be high-quality:

EuB(BH) ≥ 0 =⇒ µH ≥
pH − vL
vH − vL

and the buyer will prefer a high-priced product to a low-priced product if the high-priced

product is sufficiently more likely to be high-quality than the low-priced product:

EuB(BH) ≥ EuB(BL) =⇒ µH ≥
pH − pL
vH − vL

+ µL
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We can partition the space of buyer beliefs into regions based on what strategy the buyer

will play, in figure 2.

µL

µH

0

1

0 1

pH−vL
vH−vL

pH−pL
vH−vL

C : BH � BL � ∅

B : BL � BH � ∅

A : BL � ∅ � BH

Figure 2: Buyer Belief Space

Moving from the bottom right to the top left of figure 2, high-priced products become

increasingly more attractive to the buyer. In region A, the buyer will buy a low-priced

product if one exists, but if not, the buyer will buy nothing. In region B, the buyer prefers

to buy a low-priced product, but if none exists, the buyer will buy a high-priced product. In

region C, the buyer prefers a high-priced product and only buys a low-priced product if no

high-priced product exists.

In region A, the buyer does not believe the signal, and will only buy a low-priced product.

If this is true, it is in all firms’ best interests to set the low price, regardless of the quality of

their products. Thus, pooling at the low price can be sustained as an equilibrium as long as

µH (which is free, since high prices do not occur in equilibrium) is sufficiently low. In this

equilibrium, prices convey no information about the quality of the products.

In region C, the buyer believes the signal and strictly prefers to buy a high-priced
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product. But this means that a firm is always more likely to sell by setting a high price

than a low price. Signalling has no cost—it benefits sellers by making them more likely to

sell and yielding higher profits when they do sell. All firms will want to set the high price,

regardless of quality, and the signalling cannot be credible in equilibrium.

To see this, suppose a seller’s competitors are setting the high price with probability x,

and the low price with probability 1 − x. If the seller sets the low price, they will sell only

if all other sellers set the low price, in which case they will share the expected surplus with

the other n − 1 firms and receive (pL − c)/n. If instead the seller sets the high price, the

worst that can happen is if all the other firms set the high price and the seller has to share

the expected surplus, and receive (pH − c)/n. Since the worst-case scenario when setting the

high price is strictly better than the best-case scenario when setting the low price, all sellers

should set the high price. But if all sellers are setting the high price, regardless of quality,

then a high-priced product is just as likely to be low-quality as high-quality. This means its

expected value, (vH + vL)/2, is lower than the price, pH , and the buyer should not buy.

This feature is common to all equilibria, both in this model and in many similar models

where quality is unknown to buyers: In any equilibrium, the buyer must be sufficiently

unlikely to buy the high-priced product. In order to sustain price signalling, it must be that

setting the high price has a cost that counterbalances the obvious benefit of the increased

profit margin. If the buyer buys a high-priced product with large enough probability, then

low-quality firms will be better off setting the high price than the low price. This “cheating”

from the low-quality firms means that buyers were wrong to buy the high-priced product.

In region B and its boundary, the buyer may sometimes buy a high-priced product,

but is potentially less likely to buy a high-priced product than a low-priced product. Thus,

signalling quality by setting a high price is costly. But in order for signalling to convey

information in equilibrium, it must be that the signalling behavior is specifically more costly

for low-quality firms than high-quality firms.

This can happen because of the differences in the cost of production between high- and
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low-quality firms. A low-quality firm makes pL − cL from selling a product at the low price,

and pH − cL from selling a product at the high price. Thus, for a low-quality firm to choose

to set the low price, they must be at least

pH − cL
pL − cL

times more likely to sell at the low price than the high price. A high-quality firm has higher

cost of production, and thus lower profit margins for a given price. For a high-quality firm

to set the low price, they would need to be at least

pH − cH
pL − cH

>
pH − cL
pL − cL

times more likely to sell at the low price than the high price. This intuition leads to a

single-crossing result.

Proposition 2 (Single Crossing). Given a strategy of the buyer consistent with some beliefs

µH and µL, and given a symmetric strategy for n−1 other firms, an individual firm’s expected

profit, conditional on a cost of production c, satisfies either

∀c ∈ [0, pL], E[π(pH |c)− π(pL|c)] > 0

or

∂

∂c
E[π(pH |c)− π(pL|c)] > 0

Stated another way, in situations where high- and low-quality firms differ in the prices

they set, a high-quality firm always has a greater incentive to set the high price than a low-

quality firm. Thus, if high-quality firms are mixing between the two prices (and therefore

indifferent between them) low-quality firms will prefer to set pL, and similarly, if low-quality

firms are indifferent between the two prices, high-quality firms will prefer to set pH . Figure

3 shows how this reduces the space of potential equilibrium seller strategies.
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with single-crossing

Figure 3: Seller Strategy Space
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But we can immediately rule out pooling at pH and pure type dependence, based on the

reasoning from region C above. If both types set pH , the expected value of a high-priced

product is lower than it’s price, and the buyer will not buy. Then firms will regret their

strategy. If firms fully separate, then buyers will know in equilibrium that a high-priced

product is always high-quality and a low-priced product is always low-quality. Since buyers

prefer high quality at a high price to low quality at a low price, they will always opt for the

high-priced product. But then the low-quality firms regret setting the low price.

So the potential equilibria involve pooling at the low price, or partially separating, either

because the the high-quality firm occasionally sets the low price or because the low-quality

firm occasionally sets the high price. All three of these types of equilibria turn out to be

possible. In the pooling equilibria, prices convey no information, but prices are somewhat

informative in the other equilibria. The next section looks at how the equilibria evolve as

the number of firms increases.

3 Competition, Price Level, and Informativeness

It might seem intuitive that an increase in the number of firms would always weakly drive

down prices, but this is not necessarily true. It is usually true that, given a strategy for

the buyer, an increase in n increases the basin of attraction of pL and shrinks the basin of

attraction for pH , but this is a result about sellers’ best-response functions and not about

equilibrium behavior. It can be that in a mixed equilibrium with increasing reaction functions

among the firms, an increase in n makes firms set pH more frequently in order to keep each

other indifferent in equilibrium.

Nevertheless, a firm is most incentivized to set pH when n = 1 and there are no com-

petitors who could set pL and undercut the firm. In this case, there is a unique informative

equilibrium where a firm will certainly set the high price when high-quality, and often set

the high price when low-quality as well. This leads to the following weaker statement about
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the relationship between competition and average price.

Proposition 3. When n = 1, there is a unique informative equilibrium, and the probability

that a firm will set the high price is weakly higher in this equilibrium than in any equilibrium

for n ∈ N.

Figure 4 shows the price level in various equilibria as n increases. If agents get to the

informative equilibrium when n = 1, increasing competition must weakly lower expected

prices relative to that benchmark. But a decrease in prices could mean an increase or a

decrease in price informativeness, depending on whether the decrease in prices comes from

high-quality or low-quality firms.

1 2 3

pL

Number of firms

A
ve

ra
ge

p
ri

ce
in

eq
u
il
ib

ri
u
m

Pooling at pL
Low-type mixes
High-type mixes

Figure 4: Average price as competition increases
Notes: This figure is based on the actual parameter values used in the experiment.
Because firms are symmetric, the average price is simply xpH + (1 − x)pL where x is
the unconditional probability of an individual firm setting the high price.

Suppose the competition incentivizes low-quality firms to set the low price more often

to stay competitive. If this happens, buyer beliefs will update as a result. Since low-quality

firms are setting the low price more frequently, when the buyer does see the high price,

they know it is more likely to entail high quality. This makes a high-priced product more

attractive to the buyer and means that the high-quality firms can continue to set the high

price.
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Alternatively, it might be that an increase in competition causes high-quality firms to

set the low price more often as well, and this could decrease the informativeness of prices.

Figure 5 shows different ways that increasing n could change equilibrium seller strategies

and thus the informativeness of prices.

P(pH |vL)

P(pH |vH)

0

1

0 1

Type
Dependence

Pooling
at pH

Reverse Type
Dependence

Pooling
at pL

iso
-in

fo

lin
es

Figure 5: Potential Seller Strategies as n Increases

As n → ∞, the buyer has access to at least one low-priced product with probability

approaching 1, since all equilibria involve each firm setting the low price with non-vanishing

probability. The buyer cannot strictly prefer to buy a high-priced product, or all firms would

set the high price (and that cannot be an equilibrium, as shown above). If the buyer always

buys a low-priced product when it exists, then as n → ∞, high-priced products will never

be sold and firms will have to pool at the low price. The only alternative is for firms to make

the buyer just indifferent between the two prices; any more information than that would lead

the buyer to prefer the high price and could not be an equilibrium. Proposition 4 formalizes

this, and figure 6 shows the informativeness of different equilibria as n increases.
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Proposition 4. As n→∞, equilibrium informativeness converges to either 1/2 (completely

uninformative pricing) or

3

2
− vH − vL

2(pH − pL)

which is the maximum informativeness that can be sustained in equilibrium.

1 2 3

50%

100%

Number of firms

P
ri

ce
in

fo
rm

at
iv

en
es

s

Pooling at pL
Low-type mixes
High-type mixes

Figure 6: Price informativeness as competition increases
Note: This figure is created with the parameters used in the experiment. There always
exists an N ∈ N such that informativeness has fully converged for all n ≥ N ; this N is
always greater than 1, but can be made arbitrarily large by the choice of parameters.

If buyers were to believe that, in a pooling scenario, high-quality firms would be much

more likely to deviate to high prices than low-quality firms, then a pooling equilibrium could

not be sustained. Instead, subjects would get to the informative equilibrium when n = 1

and prices would become more informative when n increases from 1 to 2 firms. On the other

hand, as n increases, the set of others’ potential strategies to which setting the low price is a

firm’s best response grows. So in an environment with some strategic uncertainty or noise,

we might expect the low price to be set more frequently by both types of firms as competition

increases. The logit QRE, which generally selects from the set of sequential equilibria based

on a broad notion of risk-dominance, correspondingly selects the informative equilibrium

when n = 1, but then selects the pooling equilibrium when n > 1.
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4 Experimental Design

Experiments were run in-person at the University of Virginia, with a sample of 156 under-

graduate students over 14 sessions. In each session, subjects played the game 10 times per

treatment. At the beginning of each treatment, subjects were chosen to be either buyers or

sellers, and then each buyer was randomly matched with either one or two sellers and the

game was played. In 7 sessions, there was only 1 seller per buyer, and in 7 sessions there

were 2 sellers per buyer.1

In the baseline specification, the value of the high-quality product was vH = 200 and

the value of the low-quality product was vL = 100. The firms were restricted to either a

high price of pH = 160 or a low price of pL = 80. The per-unit costs of production were

cH = 40 for a high-quality product and cL = 0 for a low-quality product. Subjects were paid

for every decision, and real-money payoffs were scaled down to target $30 per participant on

average. The payment scale factors were fixed and told to participants in advance.

After the baseline specification, subjects played a specification where sellers were no

longer restricted to two prices. In this specification, sellers were able to choose a price

between 20 and 200 in increments of 20. This treatment examines the robustness of the

results relative to a more general model where sellers can choose any price.

5 Results

Figure 7 plots the seller choice probabilities in each treatment. With a single seller, observa-

tions appear to be closer to the partially separating (informative) equilibrium, and further

from the pooling (uninformative) equilibrum. In contrast, observations with two sellers have

shifted closer to the uninformative pooling equilibrium. Buyer strategies and additional

1Initially, the design was within-subjects. Subjects played one treatment (n = 1 or n = 2) first, and then
played the other afterward. But after finding significant order effects, I dropped all but the first treatment
each session, to include only data where subjects do not have beliefs that are primed by earlier treatments.
The Wilcoxon test for order effects rejects that treatment order is not a determinant of average prices with
a p-value of 0.0052.
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figures are given in the appendix.

P(pH |vL)

P(
p H
|v
H

)

0

1

0 1

(a) n = 1

P(pH |vL)
0

1

0 1

Data

Informative
Nash

Uninformative
Nash

(b) n = 2

Figure 7: Empirical Seller Strategies

Table 1 reports the mean-squared error between the empirical choice probabilities and the

choice probabilities in each Nash equilibrium. The partially separating equilibrium clearly

minimizes the MSE when there is only one seller, but for two sellers, MSE is similar across

all three Nash equilibria. Bootstrapping shows that, in every resampling of the n = 1 data,

MSE selects the partially informative Nash, while resampling the n = 2 data leads to MSE

selecting the pooling Nash about 47% of the time.

Behavior in the experiment appears quite noisy: in most sessions, both high- and low-

quality firms set both prices with significant probability. This contrasts with the Nash

equilibria, in which at least one seller is always playing a pure pricing strategy. So fitting

the data to the Nash equilibria may not be realistic. Technically, no Nash is selected by the

data since the likelihood of the data coming from any Nash is zero.

I try to fit a more realistic model by including noise in subject behavior. I’ve chosen

to include noise using quantal response; an alternative parameterization using trembling

hand (Selten 1975) is given in the appendix. While adding noise makes the model realistic,

the intuition for equilibrium selection can change; adding noise fundamentally changes the

equilibria and high levels of noise can lead to equilibria substantially different from any Nash.
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n = 1 firm

Low-types mix Pooling

MSE 0.025 (0.006) 0.241 (0.030)
likelihood 1.000 0.000
P(pH |vH) 1.000 0.000
P(pH |vL) 0.667 0.000
informativeness 0.667 0.500

n = 2 firms

Low-types mix High-types mix Pooling

MSE 0.109 (0.016) 0.111 (0.014) 0.111 (0.024)
likelihood 0.484 0.047 0.469
P(pH |vH) 1.000 0.750 0.000
P(pH |vL) 0.250 0.000 0.000
informativeness 0.875 0.875 0.500

Table 1: Nash Equilibrium Selection using MSE

5.1 Quantal Response

The quantal response model of agent behavior comes from McKelvey and Palfrey (1995,

1998). It is a generalization of the Nash equilibrium in which agents do not play their best

responses with probability 1; instead, agents simply play “better responses” more frequently

than “worse responses”. This is achieved by assuming that agents experience some noise in

the perceptions of their payoffs. Since agents have consistent beliefs, they understand that

they and their fellow agents experience this noisy perception, and they respond to it.

The most common form of quantal response equilibrium is the logit quantal response

equilibrium, in which the noise is assumed to come from a type-I extreme value distribution

with precision λ.2 When precision is zero, the noise overwhelms the true payoffs and agents

choose uniformly randomly over their possible strategies. As precision tends to infinity,

agents play their best response with probability approaching 1, and the quantal response

equilibrium converges to a Nash equilibrium.

Holt, Goeree, and Palfrey (2016) note that the quantal response model is useful in two

2Sometimes the quantal response is parametrized instead by the scale parameter of the logit errors,
µ = 1/λ. For the proofs, I follow Turocy (2005) in parametrizing the QRE by ν = λ/(1 + λ).
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ways. The first is that adding noise can be necessary to create a non-degenerate likelihood

which can then be used to estimate other parameters, and the second is that the noise may

itself be an important feature of the data. I use QRE for both of these reasons. In the first

case, I use noise to create a likelihood function with which I can estimate a finite mixture

model to see how likely each equilibrium is to be selected. The noise allows me to decide

which Nash is closer to the data even when the data may not perfectly align with either

Nash.

But noise is also an important consideration in its own right. One big reason that prices

may become less informative when competition increases is that competition increases the

basin of attraction for setting the low price. That is, as competition increases, the space of

others’ strategies for which setting the low price is a best response gets larger. Of course,

this is not Nash intuition. If agents are not noisy, the amount of others’ strategies for which

setting the low price is a best response is irrelevant; all that matters is whether setting

the low price is a best response to others’ particular equilibrium strategy. But, in a more

complex world where agents are unsure of their opponents’ actions because their opponents

are noisy, the size of the basin of attraction is a determinant of the equilibrium selection.

This intuition is also associated with the “main branch” of the QRE correspondence.

Out of potentially many quantal response equilibria, only one (almost always) constitutes

a continuous path from infinite noise to zero noise. Since this is a homotopy from uniform

randomization to a unique Nash equilibrium, it selects a Nash based on something like risk

dominance–which Nash would be selected if agents started by thinking that all strategies

would be played with equal probability and then updated smoothly from there.3 In keeping

with this intuition, Turocy (2005) has proved that the main branch of the QRE always selects

the risk-dominant equilibrium in 2x2 games.4 In this game, the main branch of the QRE

correspondence selects the informative equilibrium when there is only one seller, but selects

3This is true if the main branch is monotonic in λ. If instead the main branch bends back on itself before
ultimately converging to a Nash, then smoothly updating as λ increases is impossible, even though the main
branch still selects a unique Nash.

4The notion of risk-dominance is itself not defined for more general games.

20



the pooling equilibrium where sellers always set the low price once there are two sellers.

Figure 8 shows the logit QRE correspondence for 1 and 2 sellers, as well as the equilibria

at the likelihood-maximizing level of noise. Note that the logit QRE makes a strong pre-

diction that the one-seller data always selects the branch that converges to the informative

equilibrium. This is because, in the logit QRE dynamics, agents play better responses more

often than worse responses. In a pooling equilibrium where sellers are almost always setting

the low price, high-quality sellers still have a much greater benefit from deviating to the high

price relative to low-quality sellers. Thus, in a logit QRE, high-quality sellers do deviate

much more than low-quality sellers. So even if a deviation to the high price is quite unlikely,

if it did occur, buyers would have to assume that it is most likely a high-quality product and

would choose to buy. Thus, firms would benefit from deviating.
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Figure 8: QRE Seller Strategies

The best-fit QRE mirrors the data in that behavior selects the more informative equi-

librium with one seller and the less informative equilibrium with two sellers. Also like the

data, logit QRE involves so much noise that, while differences in average prices are large

between the one-seller and two-seller treatments, differences in informativeness are small.

Prices are less informative with greater competition but the difference is very slight (about

one percentage point in the best-fit QRE).
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5.2 Non-parametric Tests

Parametric models are valuable because they can tell a story about deviations of behavior

from theory, or pin down model parameters that underly the data. But the theory is also

sensitive to how noisiness in behavior is implemented, and fitting a model like quantal re-

sponse is a lot to ask of just a few observations. Thus, it is also valuable to see what can

be proved from the data without any assumptions on the underlying behavioral model that

subjects are following.

A non-parametric test cannot say anything about equilibrium selection (since it is agnos-

tic about what an equilibrium is) but it can test hypotheses that depend purely on the data.

Price informativeness itself is simply a feature of the data that can be calculated directly

from the seller choice probabilities. Thus, the difference in informativeness between the two

treatments can be tested using a non-parametric permutation test without any assumptions

on the underlying data-generating process. Other differences, such as decreases in prices,

can also be tested non-parametrically.

The null hypothesis of each permutation test is that the expectation of the distribution

of the data does not change with the number of sellers. Tests for price decreases are one-

sided, since theory predicts that prices should weakly decrease, and the test for changes

in informativeness is two-sided since theory is agnostic about the effect of treatment on

informativeness. Each test permutes which data points are assigned to each treatment, and

for each permutation, calculates the new difference in means across treatments. Under the

null hypothesis, permuting which data is assigned to which treatment changes nothing, and

thus the true difference in means from the actual data should not be too extreme relative

to the differences in means created from the permutations of the data. Table 3 displays the

results.
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Outcome Sample size
Number of

permutations
More extreme
permutations p-value

High-quality
price decreases 7 3432 43 0.0125

Low-quality
price decreases 7 3432 31 0.0090

Average price
decreases 7 3432 27 0.0079

Informativeness
decreases 7 3432 352 0.1026

Figure 9: Permutation Tests

6 Conclusion

This paper examines the effect of competition in situations where consumers are sufficiently

uninformed that they use prices as a guide to the quality of products; where prices convey

some, but not all information about product quality. The model presented here is a sim-

ple and straightforward way that this situation can come about. The experiment presents

suggestive evidence that the extent to which prices convey information about product qual-

ity decreases with competition. While competition clearly benefits consumers by lowering

prices, this benefit may be tempered by a decrease in the informational value of prices.

Although the informational role of prices is difficult to assess in real-world markets,

it could have serious welfare implications. Most obviously, more informative pricing may

lead those consumers who value quality most highly to discern which are the best products,

while consumers with less stringent tastes settle for low-quality products at lower prices.

Thus informative pricing can benefit welfare through increased allocative efficiency. If new

firms entering a market cannot (or do not) credibly signal their quality, their entrance might

decrease allocative efficiency, potentially leading high-quality firms to exit the market, even

when the additional value to consumers of high-quality products exceeds their additional

cost of production.
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This model is intended as a simple example to show how competition might affect infor-

mativeness; there are many other ways that prices might convey information. Some channels

(certifications, informed consumers, repeat customers, brand loyalty) quickly lead to perfect

separation between firms, where consumers perfectly learn the quality prior to buying, and

are never surprised. This may occur in many markets, but not the situations studied in this

paper where ex-post regret occasionally occurs.

Nevertheless, there are many other models that do account for partial informativeness

and occasional ex-post regret. One possibility is that consumers may be initially uninformed,

but can become informed after incurring a cost of time or effort. Another possibility is that

the space of product qualities is multi-dimensional, so that a (one-dimensional) price cannot

possibly convey all the relevant quality information to consumers, who may differ in their

relative value for different features of the product. These more involved models are left for

future work.
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A Additional Figures

Figure 10 gives the empirical buyer strategies. Movement from more separation when n = 1

towards more pooling when n = 2 is less clear here, partly because there are a continuum of

pooling equilibria, which differ along one dimension of the buyer strategy.
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Figure 10: Empirical Buyer Strategies

Figure 11 shows the data aggregated by session. Aggregating by session is necessary for

statistical tests since random matching within sessions means games played within a session

are not statistically independent. Crosses show bootstrapped 90% confidence intervals.
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Figure 11: Empirical Seller Strategies by Session

B Instructions and zTree Code

All zTree code is available on github, at dvkwiat/informativeness-zTree. Each treatment be-

gan with instructions which were shown on the screen and read aloud, followed by 10 rounds

of decision screens. After each decision, subjects were given feedback on all information

(qualities, prices, buying decisions, and payoffs). Then subjects were shown a history page

to see the outcome of each round. Figures 12 and 13 show the seller and buyer decision

screens in the 1-seller treatment.

C QRE Appendix

The quantal response equilibrium correspondence is found numerically using a path-following

procedure outlined in Turocy (2005, 2010). When there is only one seller, there is a single

QRE branch that converges to the unique informative equilibrium. Figures 14 and 15 show

how QRE choice probabilities evolve as precision increases.

There are also a continuum of pooling Nash equilibria, but none are approached by a

logit QRE. A proof of this follows: Consider a branch of the logit QRE correspondence

parameterized by precision, λ. Let πbhh and πbll denote the buyer’s probability of buying the
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Figure 12: Seller Decision Screen

product when it is priced high and buying the product when it is priced low, respectively.

Let πshh and πshl denote the probability that a seller sets the high price when their product

is high-quality and low-quality, respectively. At every point along the QRE branch, the

following equations hold:

πbhh
1− πbhh

= eλ(vL−pH+µH(vH−vL))

πbll
1− πbll

= eλ(vL−pL+µL(vH−vL))

πshh
1− πshh

= eλ((pH−cH)πbhh−(pL−cH)πbll)

πshl
1− πshl

= eλ((pH−cL)πbhh−(pL−cL)πbll)

where

µH =
πshh

πshh + πshl
, µL =

1− πshh
2− πshh − πshl
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Figure 13: Buyer Decision Screen

Taking logs and substituting ν = λ/(1 + λ) yields

(1− ν) (ln (πbhh)− ln (1− πbhh)) = ν (vL − pH + µH(vH − vL)) (1)

(1− ν) (ln (πbll)− ln (1− πbll)) = ν (vL − pL + µL(vH − vL)) (2)

(1− ν) (ln (πshh)− ln (1− πshh)) = ν ((pH − cH)πbhh − (pL − cH)πbll) (3)

(1− ν) (ln (πshl)− ln (1− πshl)) = ν ((pH − cL)πbhh − (pL − cL)πbll) (4)

Suppose, for a contradiction, that the QRE branch converges to a pooling Nash equilib-

rium as λ → ∞ (and thus ν → 1). This means that πshh → 0 and πshl → 0. First, notice

that µL → 1
2
. Then from 2, we have that

(1− ν) (ln (πbll)− ln (1− πbll))→
vL + vH

2
− pL > 0
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Figure 14: QRE correspondence for n = 1
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Figure 15: QRE Seller Strategies for n = 1

And since ν → 1, this implies that

ln (πbll)− ln (1− πbll)→∞ =⇒ πbll → 1

By assumption, choice probabilities converge as precision approaches infinity, so let π̄bhh be

the limit of πbhh. From 3, we have that

(1− ν) (ln (πshh)− ln (1− πshh))→ (pH − cH)π̄bhh − (pL − cH)

But note that the left-hand-side of this expression is eventually always less than or equal to

zero, since by assumption, πshh → 0. So it must be that

(pH − cH)π̄bhh − (pL − cH) ≤ 0 =⇒ π̄bhh ≤
pL − cH
pH − cH

(5)

Now, substituting 3 and 4 into µH , we have that

1

µH
− 1 =

1 + eH
1 + eL

=
1

1 + eL
+

1
1
eH

+ eL
eH
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where

eH ≡ e
ν

1−ν ((pL−cH)πbll−(pH−cH)πbhh)

eL ≡ e
ν

1−ν ((pL−cL)πbll−(pH−cL)πbhh)

Since π̄bhh ≤ (pL − cH)/(pH − cH) and πbll → 1, we know that eL →∞, eH 6→ 0, and

eL
eH

= e(
ν

1−ν )(cH−cL)(πbll−πbhh) →∞

Together, these imply that µH → 1. Then, from 1, we have that

(1− ν) (ln (πbhh)− ln (1− πbhh))→ vH − pH > 0

which implies that

ln (πbhh)− ln (1− πbhh)→∞ =⇒ πbhh → 1

and this is a contradiction with 5 above. Therefore, there are no QRE branches that converge

to pooling Nash equilibria.

Intuitively, the QRE is sidestepping the issue of off-equilibrium path beliefs. For every

finite precision, all players play all their possible strategies with some positive probability,

and thus beliefs are uniquely pinned down by rational expectations. As agents become

very precise, high-type sellers have a greater incentive than low-type sellers to set the high

price. For both sellers, that incentive must be vanishing, to sustain sellers never setting the

high price in the limit. But for any finite precision, high-type sellers will set the high price

relatively more than low-type sellers. As precision tends to infinity, both sellers set the high

price less and less, but the comparative difference increases; the high-type seller is more and

more likely to set the high price relative to the low-type seller. This means that consumers
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know, with probability approaching 1, that a high price must have come from a high-type

seller. If consumers know this, they should converge to always buying when presented with

a high price product. But this makes sellers regret their decision to set the high price with

vanishing probability.

When there are two sellers, there are (for some levels of precision) three QREa. Two

converge to the two informative Nash equilibria, and one (the main branch) converges to

a pooling Nash equilibrium. Figures 16 and 17 show the choice probabilities in the QRE

correspondence as precision increases.

Again, there are a continuum of pooling Nash equilibria, and only one is approached

by a QRE. A proof of this follows. Consider a branch of the QRE correspondence that

converges to a pooling Nash equilibrium, and suppose there are two or more sellers. Let πbhh

be the probability with which the buyer buys a product when only high-priced products are

available, and let πbll be the probability with which the buyer buys a product if all products

are low-priced. Let πbhb and πblb denote the probability that a buyer buys a high-priced

product or a low-priced product, respectively, when both are available. Define πshh and πshl

as above, and again let ν ≡ λ/(1+λ). Every point on the QRE branch satisfies the following

equations.

(1− ν) (ln (πbhh)− ln (1− πbhh)) = ν (vL − pH + µH(vH − vL)) (6)

(1− ν) (ln (πbll)− ln (1− πbll)) = ν (vL − pL + µL(vH − vL)) (7)

(1− ν) (ln (πbhb)− ln (1− πbhb − πblb)) = ν (vL − pH + µH(vH − vL)) (8)

(1− ν) (ln (πblb)− ln (1− πbhb − πblb)) = ν (vL − pL + µL(vH − vL)) (9)

(1− ν) (ln (πshh)− ln (1− πshh)) = ν ((pH − cH)PH − (pL − cH)PL) (10)

(1− ν) (ln (πshl)− ln (1− πshl)) = ν ((pH − cL)PH − (pL − cL)PL) (11)
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Figure 16: QRE correspondence for n = 2
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Figure 17: QRE Seller Strategies for n = 2

where

PH =
1

n

[
(πbhh − πbhb)xn−1 + πbhb

1− (1− x)n

x

]
PL =

1

n

[
(πbll − πblb)(1− x)n−1 + πblb

1− xn

1− x

]
µH =

πshh
πshh + πshl

, µL =
1− πshh

2− πshh − πshl
, x =

πshh + πshl
2

Because, by assumption, this branch converges to a pooling Nash equilibrium as ν → 1, we

have that πshh → 0 and πshl → 0, as before. Thus, x→ 0 and µL → 1/2. Because µL → 1/2,

we have (from 7 and 9) that

(1− ν) (ln (πbll)− ln (1− πbll))→
vL + vH

2
− pL =⇒ πbll → 1

(1− ν) (ln (πbhb)− ln (1− πbhb − πblb))→
vL + vH

2
− pL =⇒ πblb + πbhb → 1

Combining 8 and 9 yields

πbhb
πblb

= e(
ν

1−ν )(vH−vL)
(
µH−µL−

pH−pL
vH−vL

)
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Since (pH − pL)/(vH − vL) > 1/2 and µL → 1/2, the quantity

µH − µL −
pH − pL
vH − vL

is eventually negative. Thus, as ν → 1, πbhb → 0 and thus πblb → 1. As in the proof for one

seller above, we can use 10 and 11 to write

1

µH
− 1 =

1 + eH
1 + eL

=
1

1 + eL
+

1
1
eH

+ eL
eH

where

eH = e(
ν

1−ν )[(pL−cH)PL−(pH−cH)PH ]

eL = e(
ν

1−ν )[(pL−cL)PL−(pH−cL)PH ]

Since x→ 0, πbhb → 0, and πblb → 1, we know that PL → 1/n and PH → 0, so

eH →∞, eL →∞,
eL
eH

= e(
ν

1−ν )(cH−cL)(PL−PH )→∞

So

1

µH
− 1→ 0 =⇒ µH → 1

Lastly, if µH → 1, then by 6,

(1− ν) (ln (πbhh)− ln (1− πbhh))→ vH − pH > 0 =⇒ πbhh → 1

Thus, only one pooling Nash equilibrium is approached by a QRE, specifically the Nash
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equilibrium where

πbhh = 1, πbll = 1, πbhb = 0, πblb = 1

πshh = 0, πshl = 0, µH = 1, µL =
1

2

D Trembling-Hand Appendix

Here I have added noise using the trembling-hand model (Selten 1975). This model is

paramaterized with a level of noise, ε. Agents play their best response with probability 1−ε,

and with probability ε, they uniformly randomize over their available actions. As ε → 1,

agent behavior is entirely random noise, and as ε → 0, the set of trembling-hand equilibria

converge to a subset of the sequential Nash equilibria without noise.

When noise is implemented using trembling-hand, it often turns out to not effect the

Nash equilibria in the limit as noise approaches zero. This holds true here as well. The logit

quantal response model ruled out one of the sequential equilibria since the off-equilibrium-

path beliefs were inconsistent with the logit dynamics, even before the QRE was fit to the

data. With trembling-hand, all types of sequential equilibria are represented as limits of the

trembling-hand equilibrium correspondence as noise approaches zero.

The trembling-hand choice probabilities are graphed in figures 18 and 19. The horizontal

axis is 1 − ε to be consistent with the QRE graphs above, where uniform randomization is

on the left side of the graphs and convergence to Nash occurs on the right side.

As with quantal response, I use maximum likelihood to estimate the noise parameter

of the trembling-hand model and the probabilities of each equilibrium being selected. The

trembling-hand correspondence, along with the data and the best-fit equilibrium is given in

figure 20.
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Figure 18: Trembling-hand correspondence for n = 1
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Figure 19: Trembling-hand correspondence for n = 2
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Figure 20: Trembling-Hand Seller Strategies
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Figure 21: Histogram of Low and High Quality Prices

E Price Grid

The robustness treatment with the price grid had similar results. More competition caused

lower prices and a slight decrease in informativeness, from 67.4% with a single seller to 66.1%

with two sellers. The histograms of prices under the two treatments are given in figure 21.
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Figure 22: Empirical Seller Strategies
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Figure 23: Empirical Buyer Strategies
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Figure 24: Empirical Seller Strategies by Session

F Results Including Treatments Run Second

Figure 22 shows the empirical seller strategies for the one-seller and two-seller treatments.

This graph includes sessions where the one seller treatment was following by the two-seller

treatment (within the same subjects), and sessions where the two-seller treatment was fol-

lowed by the one-seller treatment. As expected, beliefs are primed by whichever treatment

occurred first, so there is persistence in the type of equilibria selected throughout treatments

in a given session. This makes behavior appear more noisy, and can generally erode sig-

nificance. Despite strong order effects, qualitative differences between the two treatments

remain visible. Figure 23 shows the empirical buyer strategies including both treatment

orders. In figure 24, data is aggregated by session.

The p-value for a decrease in informativeness is smaller when treatments run second are

included (about 5.3 %); the beneficial effect of additional data outweighs the noisiness of

that data.
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Table 3: Permutation Tests

Outcome Sample size
Number of

permutations
More extreme
permutations p-value

High-quality
price decreases 14 16384 112 0.0068

Low-quality
price decreases 14 16384 1109 0.0677

Average price
decreases 14 16384 285 0.0174

Informativeness
decreases 14 16384 864 0.0527
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